Performance of IEEE 802.15.4 GTS

Friedrich-Alexander-Universität Erlangen-Nürnberg Low-Latency Protocol

Future Work

(日) (日) (日) (日) (日) (日) (日)

Improving IEEE 802.15.4 for Low-latency Energy-efficient Industrial Applications

Feng Chen^{1,2}

¹Siemens AG, Automation and Drives

²University of Erlangen-Nuernberg

Echtzeit 2008, Boppard am Rhein

Introduction

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

- Motivation
- Introduction of IEEE 802.15.4
- Performance of IEEE 802.15.4 GTS
 - Standard Protocol Behavior
 - Removal of Limitations
- 3 Low-Latency Protocol
 - Improvements
 - Performance Analysis

Future Work

Low-latency IEEE 802.15.4/CSMA

Future Work

WSNs in Industrial Applications

General requirements

- Standardization
- Coexistence, especially with WLAN
- Robust and reliable communications
- Energy-efficiency
- Security mechanism

Why choose IEEE 802.15.4

- Industrial standard for LR-WPANs
- Coexistence with WLAN due to DSSS
- Duty-cycle adjustable
- GTS for real-time applications
- Provide security mechanism

(日) (日) (日) (日) (日) (日) (日)

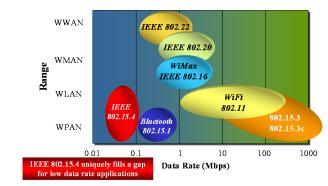
Study Case

A typical industrial application

- A star network monitors industrial processes
 - e.g.: 20 sensor nodes and 1 gateway
- Nodes send alarm messages to the gateway
 - e.g.: a short alarm message with only 1 byte payload

Requirements

- Real-time: guaranteed latency upper boundary
 - e.g.: *d_{GUA}* < 10*ms*
- Consideration of energy-efficiency
- Standardized hardwares


Low-Latency Protocol

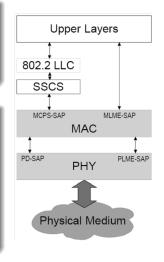
Future Work

Overview of IEEE 802.15.4

Standard for Low-Rate WPANs

- low data rate (max. 250 kb/s)
- short distance (POS of 10m)
- ultra-low complexity
- ultra-low cost
- Long battery life

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@


Protocol Architecture

PHY layer spec.

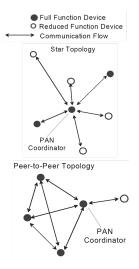
- 16 channels in 2.45 GHz ISM band
- max. bitrate: 250 kb/s
- max. symbol rate: 62.5 ksymbol/s

MAC layer spec.

- CSMA-CA channel access
- Optional allocation of guaranteed time slots (GTSs)
- Beaconing for sync.
- Duty-cycled superframe structure
- MAC layer security

Low-Latency Protocol

Future Work


Devices and Topologies

Two device types

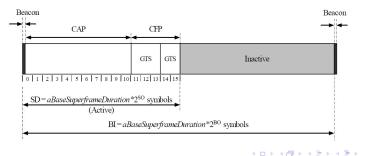
- Full-function device (FFD)
 - PAN coordinator, coordinator, or device
- Reduced-function device (RFD)
 - minimal resources
 - talk only to an FFD

Two topologies

- Star topology
- Peer-to-peer topology (mesh)
 - Cluster-tree

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへ⊙

Performance of IEEE 802.15.4 GTS


Low-Latency Protocol

Future Work

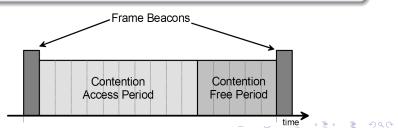
= 900

Superframe Structure

- Periodical beacons sent by coordinators for sync.
- Active portion: channel access
 - Contention Access Period (CAP):
 - slotted CSMA-CA
 - Contention Free Period (CFP):
 - TDMA-like Guaranteed Time Slot (GTS)
- Inactive portion: go to sleep

Performance of IEEE 802.15.4 GTS

Low-Latency Protocol


Future Work

Standard Protocol Behavior

Only GTS can provide guaranteed latency boundary

Limitations in IEEE 802.15.4 GTS for studied scenario

- Maximum seven GTSs allowed we need e.g. 20
- A minimum CAP length of 440 symbols required – introduce extra latency (7.04 ms/BI)
- One GTS must consist of an integer number of contiguous superframe slots
 - wast of bandwidth when transmitting e.g. 1 byte payload

Introduction

Low-Latency Protocol

Future Work

Removal of Limitations

- Only GTSs in the superframe, no CAP and inactive period $\Rightarrow I_{CAP} = I_{SLP} = 0$
- Each GTS allocated with an exact bandwidth for one complete transaction $\Rightarrow I_{GTS} = I_{TR} = I_D + I_{SIFS}$

$$\begin{split} I_{BI} &= I_B + I_{SIFS} + I_{CAP} + n \times I_{GTS} + I_{SLP} \\ d_{BI} &= I_{BI} / (62.5 \text{ ksymbols/s}) = 17.376 \text{ms} \text{ (for 20 nodes)} \end{split}$$

Table: Duration Parameters

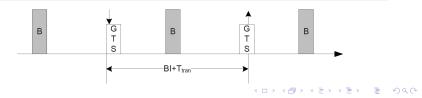
Symbol	Description	Value
I _B	length of beacon transmission	34 symbols
I _D	length of data transmission	40 symbols
I _{SIFS}	short interframe space	12 symbols
I _{TR}	length of one transaction	52 symbols

Performance of IEEE 802.15.4 GTS

Low-Latency Protocol

Future Work

Worst Case Estimation


As usual means to calculate delay boundary

Assumption

Each device possesses its own GTS slot in the superframe and keeps tracking the beacon

Worst case in the studied scenario

The maximum latency occurs when a message is generated by a device during its own GTS slot slightly after the time point, at which it can be transmitted in the current GTS, and has to wait for an extra beacon interval.

Low-Latency Protocol

Future Work

Analysis Results

Guaranteed latency boundary

$$I_{GUA} = I_{BI} + I_{TR} = I_B + (n + 1) \times I_{SIFS} + n \times I_D$$

 $d_{GUA} = I_{GUA}/(62.5 \text{ ksymbols/s})$

In the case of studied scenario

 $d_{BI} = 17.376 ms, d_{TR} = 0.832 ms$ $d_{GUA} = 18.208 ms > 10 ms$

Analysis

ID and ISIFS dominate the boundary value

- I_{SIFS} = 12symbols
- $I_D = 40$ symbols = 20 bytes

 \Rightarrow Transmission of one byte payload needs 38 symbols (19 bytes) overheads added by MAC and PHY (too large)

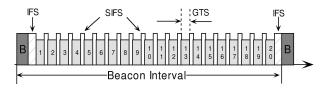
Overview

Design goals

- Guaranteed latency upper-boundary
 - 20 nodes, 1 byte payload, max. 10 ms latency
- Energy-efficiency consideration
- Hardware compatibility

General features

- Original IEEE 802.15.4 PHY
- TDMA-based superframe structure
- Largely reduced MAC overheads


Performance of IEEE 802.15.4 GTS

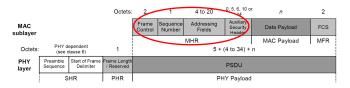
Low-Latency Protocol

Future Work

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

TDMA-based Superframe Structure

- Original beaconing mechanism reserved
 - Beacon tracking enabled (less latency)
 - Beacon tracking disabled (less energy)
- Pre-allocated GTS slots
- IFS (12 symbols) after or before beacon
 - time for radio switch between Rx and Tx
- SIFS (4 symbols) between GTS slots
 - no radio state switch occurs


Performance of IEEE 802.15.4 GTS

Low-Latency Protocol

Future Work

Data Frame w/o MAC Header

Originally 19 bytes overheads added to one byte payload

Abandon MAC header

- Pre-allocation -> implicit addressing
- No direct ACK -> SN unneeded
- Other fields dispensable

Group Acknowledgment

PAN coordinator sends a group ACK in next beacon

Performance of IEEE 802.15.4 GTS

Low-Latency Protocol

Future Work

Parameters Recalculation

For studied scenario: 20 nodes, 1 byte payload

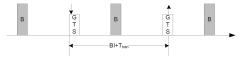
Table: Reduced Duration Parameters

Symbol	Standard w/o limitations	Improved protocols
I _D	40 symbols	18 symbols
I _{SIFS}	12 symbols	4 symbols
I _{TR}	52 symbols	22 symbols
I _{BI}	1246 symbols	494 symbols

Beacon interval

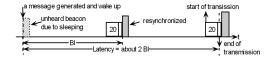
$$\begin{split} I_{BI} &= I_B + 2 \times I_{IFS} + n \times I_{GTS} + (n-1) \times I_{SIFS} \\ d_{BI} &= (I_B + 2 \times I_{IFS} + 20 \times I_D + (20-1) \times I_{SIFS}) / (62.5 \text{ ksymbols/s}) \end{split}$$

Performance of IEEE 802.15.4 GTS


Low-Latency Protocol

Future Work

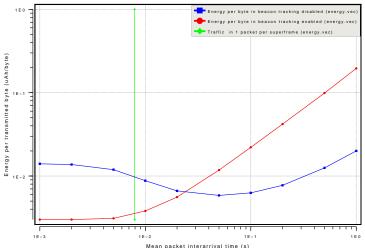
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@


Performance Analysis

Beacon tracking enabled

Guaranteed max latency: BI + t_{TRAN} = 8.3 ms

Beacon tracking disabled


Guaranteed max latency: 2BI = 15.81 ms

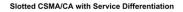
Performance of IEEE 802.15.4 GTS

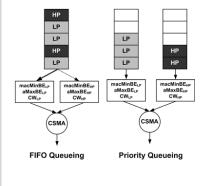
Low-Latency Protocol

Future Work

Simulation Results for Energy Consumption

Energy VS. Packet Interval


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで


Future Work ●○

Low-latency IEEE 802.15.4/CSMA

Priority-based scheme providing differentiated QoS

- Priority queue for two types of data packets
 - High priority (HP) packets
 - Low priority (LP) packets
- Differentiated CSMA/CA parameters
 - One-time CCA VS. two-times
 CCA
 - $CW_{HP} \leq CW_{LP}$
 - macMinBE_{HP} \leq macMinBE_{LP}
- Priority toning

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Performance of IEEE 802.15.4 GTS

Low-Latency Protocol

Future Work ○●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you and questions?