
Copyright Elektrobit (EB) 2011, Company confidential 
www.elektrobit.com, 13 Sep 2011, Slide 1 

David Haworth

Elektrobit Automotive GmbH

David.Haworth@elektrobit.com

An AUTOSAR-compatible microkernel
for systems with safety-relevant components



The AUTOSAR layered architecture

An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 2 

Complex
Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware 
Abstraction

Memory ServicesSystem Services

Onboard Device 
Abstraction

Communication Drivers

Communication 
Hardware Abstraction

Communication Services

Application Layer



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 3 

Tasks

ISRs

Hook functions

Interrupt locking

Resources

Counters

Alarms

Schedule Tables

Synchronization for Schedule Tables

Memory protection

Timing protection

Error handling

A huge amount of code to develop to safety standards

The AUTOSAR OS module



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 4 

Task provides its own protection

Error-detecting codes (EDC)

Memory protection

Procedure:

Disable interrupts

Verify or enable access to data

Perform computation

Disable access to data, or recalculate EDC

Enable interrupts

Problems:

Must be implemented separately in each task

Performance (computation of EDC)

Locks out all other activity (may disrupt network activity)

Protection outside the OS



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 5 

Add a high-integrity MPU driver to a standard OS (without memory protection)

Added in hook functions in all kernel entry and exit points

Prevents OS and other tasks from modifying critical data

Problems:

OS is still responsible for register values (local variables)

Tasks must therefore lock interrupts while processing critical data

Locks out all other activity (may disrupt network activity)

High-integrity MPU driver



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 6 

Create a high-integrity context switch for a standard OS

Implements context switch and memory protection

Task's memory is protected against modification by other tasks

Task's memory is protected against modification by standard OS

Standard OS still selects which task is “most eligible”

Problems:

High overhead of switching MPU twice for each OS service

Fault in standard OS could select wrong task

Critical sections could fail

Stacks cannot be shared among equal-priority tasks

Minimal high-integrity context switch



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 7 

A full implementation of AUTOSAR-OS would certainly satisfy the requirements:

Task's memory is protected against modification by other tasks

OS can be trusted not to modify tasks' variables

Critical sections and stack sharing is possible

Problems:

Very high development costs

Some features (e.g. timing protection) not well understood

Full implementation of AUTOSAR-OS



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 8 

In the microkernel:

Task, ISR and hook function management

Resources and interrupt locking for critical sections

Interface (with memory protection) to functions of a standard OS

Events (could be in standard OS, but need speed for RTE)

In the standard OS:

Counters

Alarms

Schedule Tables (including synchronization)

Not implemented (for now)

Timing protection

OS-Applications

Solution: a microkernel



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 9 

Microkernel manages “threads”:

A “thread” is a generalized abstraction of a task

Threads can have parameters and can return values

All other executable objects (ISRs, hooks etc.) run in threads

OS functionality outside the microkernel (StartScheduleTable(), 
SetRelAlarm() etc.) runs in threads too

Even main() and the idle loop run in threads

Most threads run in an unprivileged mode of the processor

Having just one type of executable object leads to simplicity of design

Design of EB microkernel



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 10 

Microkernel is not re-entrant:

Interrupts are completely disabled during microkernel execution

System state is held in explicit structures, not in multiple nested stack 
frames

Exception during microkernel execution should not happen
If it does, a simple response of shutdown.

Microkernel runs with strict memory protection:

Does not have access to threads' data or stacks

“Get” API implemented by passing results back in registers and placing 
into referenced variables in a library function

Easier to verify the correctness of the design

Design of EB microkernel



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 11 

Microkernel control flow

Thread B

Kernel
Exit

Kernel
Function

Dispatch

Thread A

Kernel
Entry

System call,
Interrupt or
Exception

Return
from

interrupt



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 12 

Kernel entry (typically assembly language):

One entry point for each interrupt/exception type

Save all registers into “register store” of current thread

Create valid C environment (stack pointer, etc.)

Call the kernel function associated with this entry point
If the kernel function returns: endless loop (shouldn't happen)

Kernel exit (typically assembly language):

One exit point (“called” by dispatcher)

Restore all registers from “register store” of current thread
(Including PC, so thread resumes where it left off)

There is always a thread available for execution

A new thread has its “register store” initialized as though it were interrupted just 
before the first instruction of its defined top-level function

Kernel entry and exit



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 13 

Three types of kernel function:

System call

handle internally (tasks, resources, etc.)

activate thread in non-safety OS (alarms, schedule tables etc.)

Interrupt

handle internally

activate thread for ISR

Exception handler

hardware-dependent; typically activate thread for ProtectionHook

Kernel function



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 14 

Selects most eligible thread and lets it run.

Old thread to “READY” state

New thread to “RUNNING” state

Note: new and old could be the same thread!

Load memory partition for new thread into MPU

“Return” to new thread; kernel exit

Dispatcher



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 15 

Task control
ActivateTask(), ChainTask(), Schedule()

TerminateSelf() (implements TerminateTask, but behaves identically in other 
threads)

Resources
GetResource(), ReleaseResource()

Events
SetEvent(), WaitEvent(), ClearEvent()

Information
GetTaskID(), GetTaskState(), GetISRID()

OS control
StartOS(), ShutdownOS(), ReportError()

All other implemented services (alarms, counters, schedule tables) are delegated to 
the non-safety OS

Microkernel services



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 16 

Problems with interrupt lock functions:

Not “fast”; needs a system call anyway

Extra API (up to 6) – more verification

API calls may unlock interrupts unexpectedly
AUTOSAR solves this by introducing error checks

performance hit

cannot use API inside critical section (e.g. SyncScheduleTable)

Solution: use resources instead!

Two global resources configured with ceiling priority of highest-priority ISR 
of category 1 and 2, respectively

Extension to permit nesting (in same thread)

It is now safe to call APIs with interrupts locked (except WaitEvent)

What? No interrupt locks?



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 17 

We have implemented a microkernel that is:

Functionally compatible with AUTOSAR-OS for correctly written systems

Implements safety-relevant task, ISR and hook management

Developed for use up to ASIL-D (ISO26262)

Delegates non-safety-relevant activities to a non-ASIL subsystem

Prevents interference from the non-ASIL subsystem (with respect to 
data, including statically and dynamically allocated variables and 
local variables in registers)

Summary



An AUTOSAR-compatible microkernel
Copyright 2011 Elektrobit Automotive GmbH
Slide 18 


