Die Anfänge der Fluglärmüberwachung in Deutschland

Brigitta Holleczek

Echtzeit 2020

GI-FA Echtzeitsysteme

20.11.2020

Der Fund

Broschüren
Fotos
Aufzeichnungen

Wegwerfen?

Inhalt

- Einleitung & Motivation
- Grundlagen
- Aufgabe & Realisierung
- Einsatz & Ergebnisse
- Ausblick
- Würdigung

Einleitung & Motivation

Fluglärm reduzieren Fluglärm messen

Reduzieren

- Leisere Triebwerke
- Anstellwinkel
- Route

• ... weniger Verkehr ...

Messungen

- Klagen nur mit Messungen zu begegnen
- früheste Messungen in den 60er Jahren in Frankfurt
 - nur punktuell
 - nur mobil
- permanente Messungen nötig: typische IT-Aufgabe
- wirtschaftlich "im Feld" realisierbar erst mit Aufkommen von
 - handlichen, robusten Kleinrechnern bzw. Mikroprozessoren
 - integrierter Peripherie (A/D-Wandler) und wetterfesten Mikrophonen
- Ende 70er-Jahre: Übergang von saalgroßen Rechnern zu "Racks"

Grundlagen

Gesetz zum Schutz gegen Fluglärm vom 30.03.1971 bzw. 31.10.2007

DIN 45643 "Messung und Beurteilung von Flugzeuggeräuschen" von 1984 bzw. 2011

Gesetz zum Schutz gegen Fluglärm vom 30.03.1971

- § 2 (1) "äquivalenter Dauerschallpegel" L_{eq}
- § 2 (2) "Lärmschutzbereiche" mit Schutzzonen:
 - I: >75 dB(A)
 - II: >67 dB(A)
- § 3 (Anlage)
 - Ermittlung des äquivalenten Dauerschallpegels L_{eq} unterschiedlich für Tag- (6 22 h) und Nachtflüge (22 6 h)
 - Maximum: Ermittlung unter Berücksichtigung des Abstands zur Flugbahn und der Schallausbreitungsverhältnisse
 - Dauer (Rechteckmethode): Zeit des Vorbeiflugs ab 10 dB(A) unter Maximum im Anstieg bis 10 dB(A) unter Maximum im Abfall
 - Berechnung des äquivalenten Dauerschallpegels (für einen Bezugszeitraum)
 Summe gewichteter und zeit-normierter Pegel von Einzel-Schallereignissen

Gesetz zum Schutz gegen Fluglärm vom 30.03.1971

Anlage zu § 3 Berechnungsvorschrift

5. Nach der Formel

$$L_{\rm eq} = 13.3 \text{ lg } \sum_{i} g_{i} \frac{t_{i}}{T} \cdot 10^{-\frac{L_{i}}{13.3}} dB(A)$$

sind mit

- a) $g_i = 1.5$ für Tagflüge $g_i = 0$ für Nachtflüge
- b) $g_i = 1$ für Tagflüge $g_i = 5$ für Nachtflüge

zwei äquivalente Dauerschallpegel zu ermitteln; der höchste Pegel ist der äquivalente Dauerschallpegel nach § 2 des Gesetzes.

6. Formelzeichen:

- lg der Logarithmus zur Basis 10
- Σ die Summe über alle Vorbeiflüge im Be-
- zugszeitraum
- i der laufende Index des einzelnen Vorbeiflugs
- $g_{\rm i}$ die Bewertungsfaktoren für Tag- und Nachtflüge
- ti die Dauer des Geräusches nach Nummer 4
- T der Bezugszeitraum nach Nummer 1 Satz 2
- L_i der Zahlenwert des höchsten Schallpegels des Geräusches nach Nummer 3

DIN 45643 "Messung und Beurteilung von Flugzeuggeräuschen" von 1984 bzw. 2011

- Strukturierung von 2011 [7]
 - Erfassung und Verarbeitung von Daten zur Ereignis-
 - -erkennung
 - -klassifizierung
 - -identifizierung
- Neu in 2011 [7]
 - Verschärfung der Grenzwerte
 - Identifizierung auch mit Radardaten
- Ende 70er Jahre (zur Realisierungszeit) nur als früher Entwurf
- 1990 eigene DIN 45641 zur Mittelung von Schallpegeln

Aufgabe & Realisierung

oBdA: Siemens

Prototyp: Flughafen Nürnberg 1974-1977 [1]

Redesign: Zweigniederlassung Nürnberg

Software und Architektur

- Aufgabe
 - Bestimmung von einzelnen Schall-Ereignissen
 - Bilden des äquivalenten Dauerschallpegels
 - tagesweise
 - für längere Zeiträume
 - Nebenbedingung
 - Unterscheidung Fluglärm vs. Alltagsgeräusche

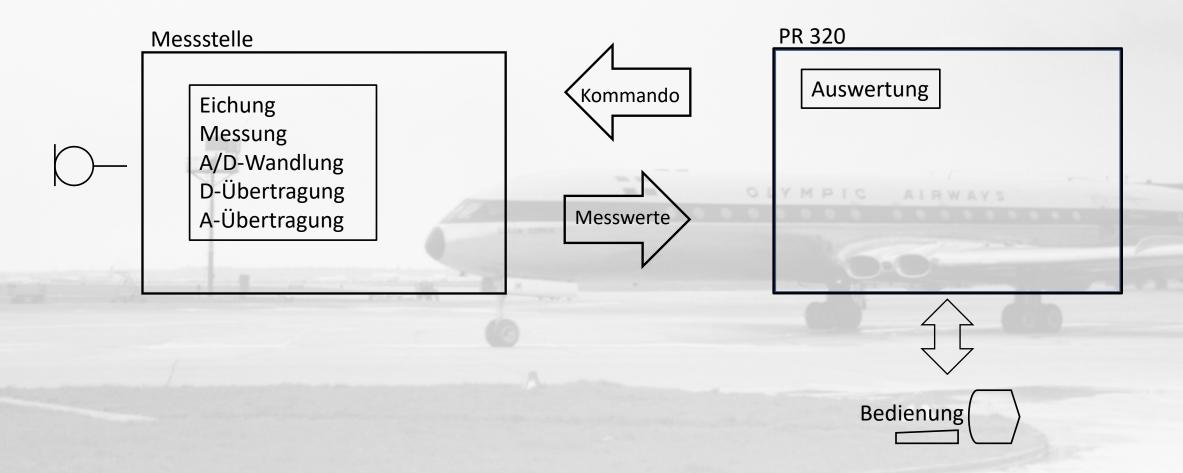
Software und Architektur

- Realisierung durch Verteiltes System
 - Messstelle
 - Fernwirksystem Z20 (Prototyp), später 8086
 - Programmierung in Assembler
 - mit A/D-Wandler
 - Zentrale
 - Typ 320 (vergl. 310 ... 330)
 - Pufferbatterie
 - Speicherausbau 16k Worte 16 bit
 - 16 Standardregister, als Zellen des Hauptspeichers
 - Schreibtischversion
 - Programmierung in ASS 300 mit ORG 320 (Aufrufe durch "Makros")

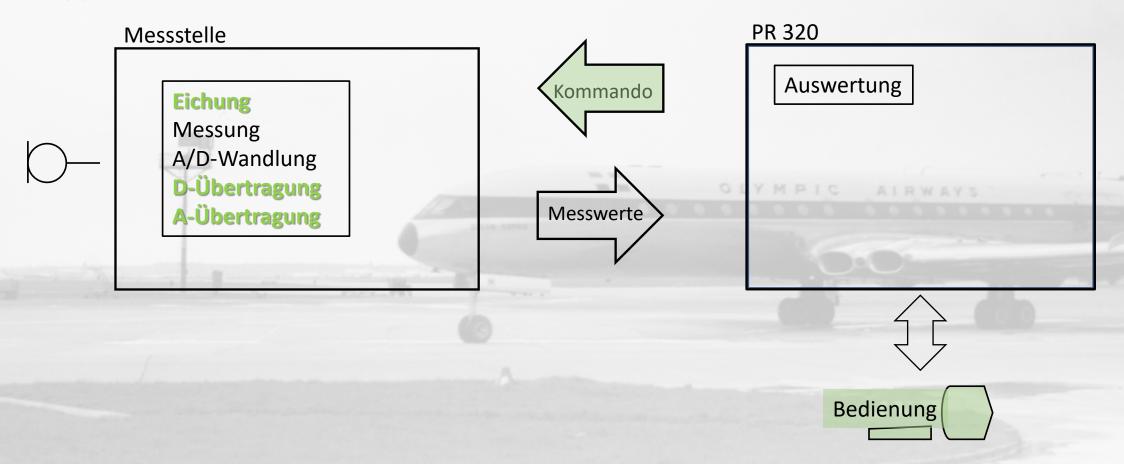
Messstelle und Kommunikation

- Messtelle (incl. Mikrophon)
 - "im Feld", nahe Flugroute
 - auf Hausdächern, oft Industrieanlagen
 - wetterfestes Mikrophon mit Windschutz
 - Schallpegelmesser
- Kommunikation
 - analoge doppeladrige Telefonleitungen
 - max. 200 baud
 - Messwert in Telegramm mit 6 bit + parity
 - Messungen im Sekundentakt

Funktionen

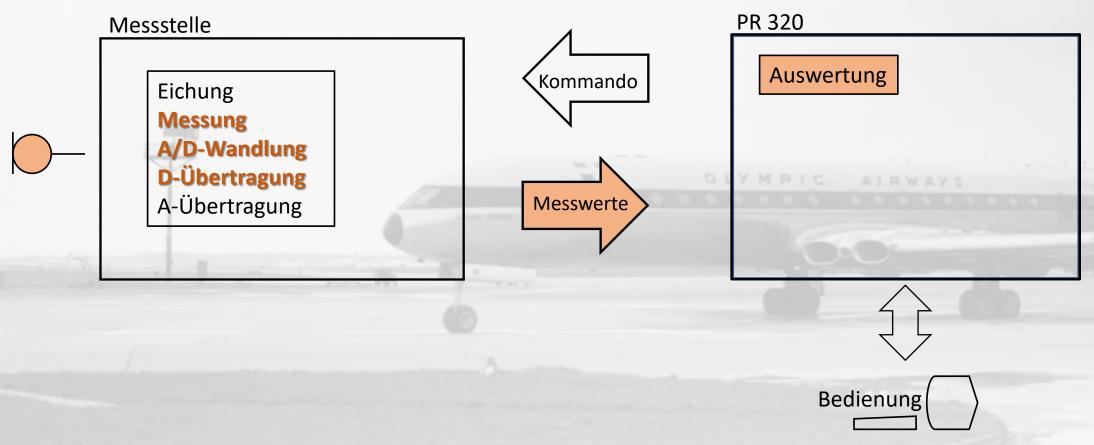

Reguläre Messungen

- Abgrenzung zu Alltagsgeräuschen
 - Geräuschdauer
 - Korrelation verschiedener Messstellen
- Identifikation
 - nachträglich, durch Flugplan bzw. Tower-Info

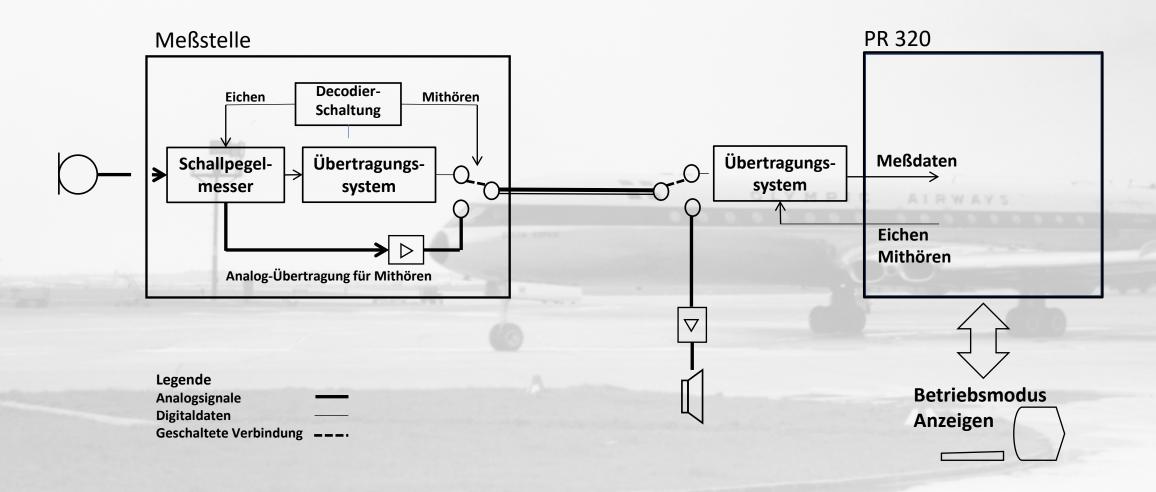

Tests (zeitlich begrenztes Umwidmen der Leitung), per Kommando

- tägliches Eichen des Schallpegelmessers
 - Zuschalten eines Generators und Messung
- analoges Mithören
 - bei unklaren Messungen
 - beschränkte Tonqualität

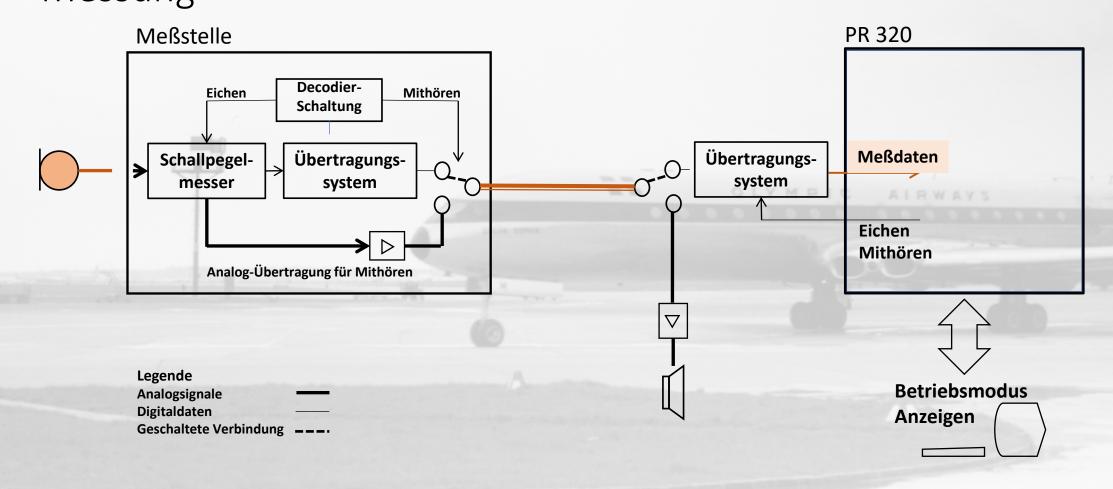
Kommunikationsstruktur

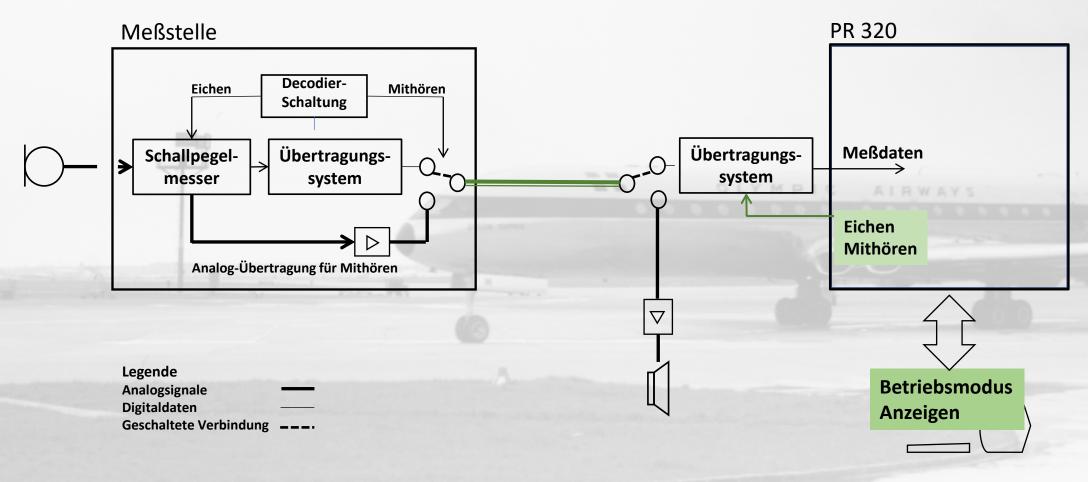


Kommunikationsstruktur Test



Kommunikationsstruktur


Messung


Signal- und Datenfluss

Signal- und Datenfluss Messung



Signal- und Datenfluss Test

Messstelle

Messtelle mit Schallpegelmesser (untere Reihe) Testequipment (Mikrophon, Kopfhörer) Dachausstieg

Wetterfestes Mikrophon mit Windschutz, auf Flachdach

Einsatz & Ergebnisse

Messwerterfassung

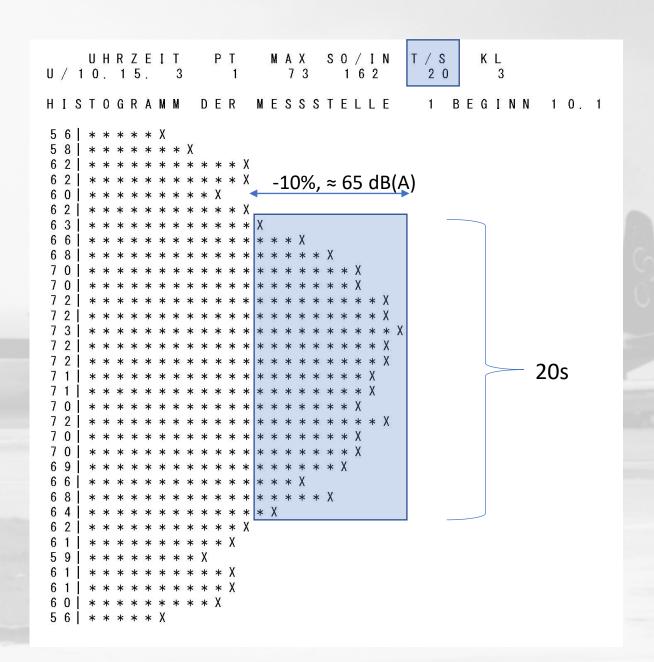
Auswertung

Visualisierung durch "liegende Zeilen-Graphik"

- Flughafen Nürnberg
- Messbeginn 10:15:03
- Höchster Wert 73 dB(A)
- Überflugdauer 20 s

Graphik aus [1] rekonstruiert

```
M A X S O / I N
7 3 1 6 2
    UHRZEIT
                                            ΚL
U / 10.15. 3
               DER MESSSTELLE
                                       1 BEGINN 10, 1
```


- Flughafen Nürnberg
- Messbeginn 10:15:03
- Höchster Wert 73 dB(A)
- Überflugdauer 20 s

```
M A X S O / I N 7 3 1 6 2
     UHRZEIT
                                              ΚL
 U / 10.15. 3
                      MESSSTELLE
                                           BEGINN 10.1
dB(A)
```

- Flughafen Nürnberg
- Messbeginn 10:15:03
- Höchster Wert 73 dB(A)
- Überflugdauer 20 s

```
M A X S O / I N 7 3 1 6 2
    UHRZEIT
                                             ΚL
U / 10.15. 3
                     MESSSTELLE
                                       1 BEGINN 10.1
                                       Maximum bei 73 dB(A)
```

- Flughafen Nürnberg
- Messbeginn 10:15:03
- Höchster Wert 73 dB(A)
- Überflugdauer 20 s

Schallereignisse Protokoll (Protoyp [1])

- Meßzeit ca. 1h
- 4 Vorgänge
- ein Mithör-Eingriff
- Stunden-L_{eq}

Graphik aus [1] rekonstruiert

```
SEITE
                         - UEBERWACHUNGSANLAGE NUE
              NACH FLUGLAERMGESETZ
START 10 UHR
GI = 1, 5/0, 0/1, 0/5, 0
                         164
                         193
                                        L 28
                                               9 0
                         182
                                        S 28
                         175
                         1 4 5
                                 2 2
                         152
                         154
                                        $ 10
                         1 7 6
                         160
                                        S 28
                                 2 6
                         186
                                 3 3
                         1 1 5
                                    KL S/L REF UE/DB UE/T
U / 6.57.50
  UHR PT/LEQ
                                4 / 5 9
                 2 / 5 6
                         3 / 6 1
                                        5 / 6 2
                                                6 / 4 9
                                                        7 / 5 0
```

Schallereignisse Protokoll (Protoyp [1])

- Meßzeit ca. 1h
- 4 Vorgänge
- ein Mithör-Eingriff
- Stunden-L_{eq}

```
SEITE
                         - UEBERWACHUNGSANLAGE NUE
              NACH FLUGLAERMGESETZ
START 10 UHR
GI = 1, 5/0, 0/1, 0/5, 0
                                              REF UE/DB UE/T
                                 2 3
                         193
                                        L 28
                                               9 0
                         182
                                        S 2 8
                         1 4 5
                                 2 2
                         152
                         154
                                        $ 10
                         1 7 6
                         160
                                 2 6
                                        S 2 8
                         186
                         1 1 5
                                     KL S/L REF UE/DB UE/T
U / 6.57.50
                   7 1
  UHR PT/LEQ
                                 4 / 5 9
                 2 / 5 6
                         3 / 6 1
                                         5 / 6 2
                                                 6 / 4 9
                                                        7 / 5 0
```

Schallereignisse Protokoll (Protoyp [1])

- Meßzeit ca. 1h
- 4 Vorgänge
- ein Mithör-Eingriff
- Stunden-L_{eq}

```
SEITE
                         - UEBERWACHUNGSANLAGE NUE
              NACH FLUGLAERMGESETZ
START 10 UHR
GI = 1, 5/0, 0/1, 0/5, 0
                                     KL S/L REF UE/DB UE/T
                         1 4 9
                                 2 3
                         164
                                      6 L 2 8
                         193
                    8 4
                         182
                                      5 S 2 8
                    8 2
                         176
                         1 4 5
                                 2 2
                         152
                                      4 S 1 0
                         154
                         1 7 6
                                 2 6
                                      4 S 2 8
                         160
    6.33.10
                         186
                                 3 3
                         1 1 5
    6.56.50
                  MAX SO/IN T/S
                                     KL S/L REF UE/DB UE/T
U / 6.57.50
  UHR PT/LEQ
         1 / 6 5
                 2 / 5 6
                         3 / 6 1
                                 4 / 5 9
                                         5 / 6 2
                                                 6 / 4 9
                                                         7 / 5 0
                                                                 8 / 4 3
```

Einsätze

Nürnberg (Prototyp) 1974-1977

• Salzburg 1979 / 1980

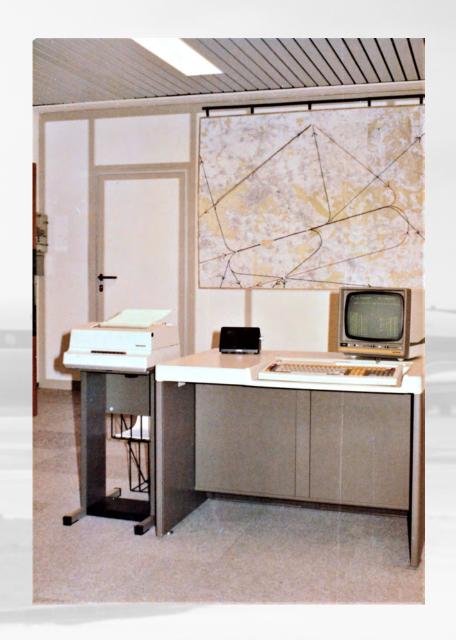
• Stuttgart 1981

• Hamburg 1981

• Zürich 1982

• Berlin Tegel 1982

Manchester 1983 in Planung


Salzburg (Freilassing)

Messtelle im Grünen

Stuttgart die Zentrale

- Prozeßrechner Siemens 320 Tischversion
- Blattschreiber
- Lautsprecher zum Mithören
- Sichtgerät
- Poster mit Landebahnen- und Flugrouten

Berlin Tegel letzter Flugtag 8.11.20

- Schautafel in Tegel
 - Anfertigung durch Flughafen
 - Messstellen durch Analog-Instrumente markiert
- Standort Zentrale in Tempelhof
- Übergabe im Beisein der Standortkommandantur

Berlin Tegel

- Schautafel in Tegel
 - Anfertigung durch Flughafen
 - Messstellen durch Analog-Instrumente markiert
- Standort Zentrale in Tempelhof
- Übergabe im Beisein der Standortkommandantur

Berlin Tegel

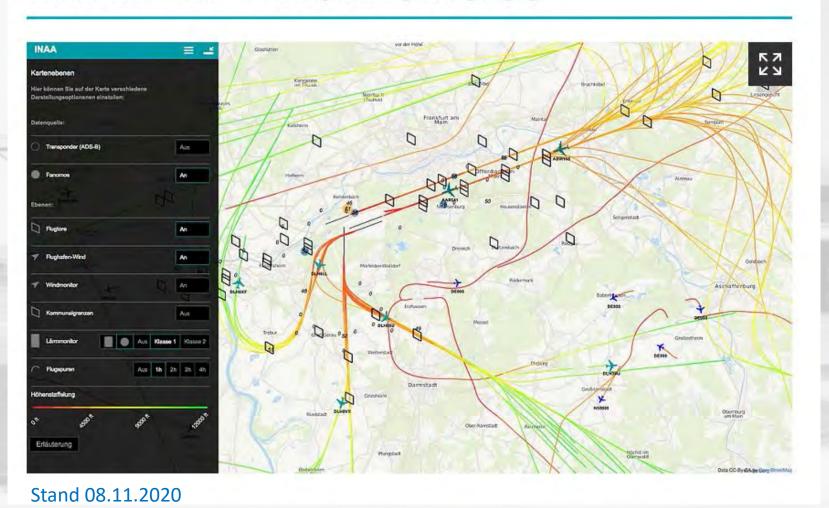
- Schautafel in Tegel
 - Anfertigung durch Flughafen
 - Messstellen durch Analog-Instrumente markiert
- Standort Zentrale in Tempelhof
- Übergabe im Beisein der Standortkommandantur

Ausblick

nichts grundsätzlich neues mehr Daten Live-Info

Messanlagen

- 2002 "Modernes Überwachungssystem" [12]
 - PC-basiert, abgesetzte Standorte, in Flughafensysteme integrierbar, auch meteorologische Daten
 - Flugidentifizierung: incl. Radar- und Flugspurinformationen
- 2012 BER-Gutachten [11]
 - übliche Parameter, mobile Anlagen
- 2019 MUC-Broschüre [13]
 - 16 ortsfeste und 3 mobile Messstationen
 - tägliche Überprüfung der Stationen: akustische Eichung
 - Flugidentifizierung: incl. Radarinformationen


Öffentlichkeitsarbeit

INAA: Interaktive Visualisierung der Flugrouten und Lärmpegel, Umwelt und Nachbarschaftshaus Kelsterbach [14]

```
https://www.umwelthaus.org/
fluglaerm/anwendungen-service/inaa-air-traffic-noise/
```

Öffentlichkeitsarbeit

INAA - Air Traffic Noise

Würdigung

Projekt

Team

Würdigung

- attraktives Projekt
 - seinerzeit neueste Technik
 - Gestaltungsfreiheit
 - geradlinig
 - öffentlichkeitswirksam

- schlagkräftiges Siemens-Team
 - Anerkennung an Kollegen Udo Donner und Uli Teuber

Ende ...

Auszug Literatur, soweit erwähnt, verkürzt notiert (vollständige Liste im Textbeitrag)

- [1] Fluglärmüberwachungsanlage, Siemens ZN Nürnberg, 1977
- [7] Isermann, Vogelsang: neue DIN 45641, 2011
- [11] Messbericht BER, 2012
- [12] Schmidt: Modernes Überwachungssystem, 2002
- [13] Broschüre MUC, 2019
- [14] Interaktive Visualisierung, 2019